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Abstract : Methacrylonitrile (MeAN) is a plastic monomer. Its effect on
membrane bound enzymes like Na‘'K*-ATPase, Ca?*-ATPase, Mg?-ATPase,
NADH dehydrogenase, alkaline phosphatase (ALP) and various elements
like sodium (Na*), potassium (K*), and calcium (Ca?") in rat brain were
studied. Administration of 50 mg/kg body weight/day (0.25 LD,;) and
100 mg/kg body weight/day (0.5 LD,) by gavage to rats for 7 days resulted
in a significant decrease in activities of Na*K*-ATPase, Ca?*-ATPase,
Mg?-ATPase, and NADH dehydrogenase. A significant reduction in calcium
content, potassium content and a significant increase in sodium content
and alkaline phosphatase activity in MeAN treated animals were observed.
Inhibition of membrane bound enzymes occurred due to either direct effect
of MeAN or indirect effect of changes in ionic homeostasis in MeAN treated
animals.
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INTRODUCTION flue-cured, or a blend of these tobaccos (1).
MeAN has been shown to be toxic in rats,

Methacrylonitrile (MeAN) is an aliphatic ~dogs and rabbits by dermal, inhalation,

nitrile, which is produced in large quantities
and it is wused as a replacement for
acrylonitrile (AN) in the production of
plastics, elastomers, coatings and in the
manufacture  of carbonated beverage
containers. MeAN has been identified as a
component of the main stream smoke of
unfiltered cigarettes made from air-cured,

intraperitoneal, ocular and gavage routes (2).
In addition, MeAN depletes glutathione in
vivo and in vitro (3). MeAN is thought
to undergo metabolism via pathways
qgualitatively similar to that of AN (4).
Methacrylonitrile metabolism leads to the
liberation of cyanide ions in the blood (5). In
comparison to other organs, blood, liver and
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brain contained the highest amounts of
cyanide (6). The toxic actions of MeAN were
attributed to the inactivation of cytochrome
oxidase leading to disturbances in tissue
respiration (7). MeAN administration, in rat,
mouse and gerbil developed several central
nervous system abnormalities, including
depression, ataxia, asphyxia, irregular
breathing, trembling, and convulsion (8).
Similar pathological signs were observed in
rats and mice treated with potassium cyanide
(9). Literature on the toxic influence of MeAN
on central nervous system is completely
lacking. We therefore undertook the present
study to characterize the toxic effects of
MeAN on membrane bound enzymes of rat
brain.

MATERIAL AND METHODS

Wistar strain male albino rats weighing
about 120-150 g were used for the study.
Sublethal doses (50 mg/kg body weight/day
(0.25 LD,;)) and 100 mg/kg body weight/day
(0.5 LD, for 7 days of methacrylonitrile
(Fluka Cheme AG, CH-9470 Buchs,
Switzerland) in sunflower oil were
administered orally to experimental animals
(Group 2 and Group 3). The dosages were
chosen according to the report (10). Control
animals (Group 1) were given sunflower oil
only. After the experimental period animals
were sacrificed after an over night fast by
cutting jugular vein. Brain was dissected and
washed in ice-cold saline and homogenized
at 4°C (10% wi/v) in 0.1 M Tris HCI, pH 7.4.
Homogenate was centrifuged at 2000 x g for
10 min and supernatant was used for the
assays. Total protein was determined by the
method of Lowry et al (11). Na*K*-ATPase
activity was assayed according to a method
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described previously (12). Ca?*-ATPase
activity was estimated according to the
method (13). Mg#*-ATPase activity was
measured according to the method (14).
Alkaline phosphatase activity (ALP) was
assayed by measuring the phenol liberated
from disodium phenylphosphate (DSPP) by
the colour reaction with Folin’s reagent in
the presence of an alkali according to the
method (15). NADH dehydrogenase (NADH-
DH) was assayed according to the method
(16). One gram of tissue was placed in a
Kjeldalhl’s flask 2.5 ml of de-ionized water
and one ml of 1:1 mixture of concentrated
nitric acid and 70% perchloric acid were
added. The samples were digested on a sand
bath till the solutions became clear. The
digest was made up to 50 ml with de-ionized
water and mixed thoroughly. Sodium,
potassium and calcium concentrations were
estimated by using atomic absorption
spectrophotometer.

For histological study portion of brain
from the control and MeAN treated rats were
gently rinsed with physiological saline
solution (0.9% NaCl) to remove blood and
debris adhering to tissues. The tissues were
then fixed in 10% formalin for 24 hrs. After
dehydration through a graded series of
alcohols, the tissues were cleaned in methyl
benzoate, embedded in paraffin wax. Sections
were cut at 5 um thickness and stained with
hematoxylin and eosin.

Statistical analyses were done by
Student’s test. A ‘P’ value less than
0.05 were considered as significant.
The ethical committee of the institute has

given the necessary ethical clearance for this
work.
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RESULTS

The data after statistical analyses are
presented in Tables | and IlI. Table | shows
the activities of Na‘'K*-ATPase, Ca?*-ATPase,
Mg?*-ATPase and NADH dehydrogenase were
significantly (P<0.001) reduced and a
significant (P<0.001) increase in alkaline
phosphatase (ALP) in MeAN treated rats
compared with control group (Group I). Table
Il shows the level of sodium (Na') was
significantly increased (P<0.001), whereas
those of calcium (Ca?') and potassium (K*)
were significantly reduced (P<0.001) in MeAN
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DISCUSSION

The observed decrease in the activities
of Na'K*-ATPase, Ca?-ATPase and Mg?-
ATPase in MeAN treated rats (Table 1) may
be due to the change in ionic homeostasis
and may also be due to ATP depletion (17).
Na‘K*-ATPase uses chemical energy provided
by ATP to trans-locate Na* and K*, and build
up an electrochemical potential gradient
across the plasma membrane (18). Since
MeAN is a cyanide releasing compound,
which is a potent ATP depletor, would have
decreased the activity of Na'K*-ATPase.

treated rats as compared to control group Inhibition of Na'’K*-ATPase by MeAN in RBC

(Group 1). membrane has been reported earlier (19).

TABLE | : Activities of Na'K*-ATPase, Ca?>-ATPase, Mg?-ATPase NADH dehydrogenase

and Alkaline phosphatase in whole brain of control and MeAN treated rats.
Group 1 Group 2 Group 3
Parameters (Control) (50 mg/kg body (100 mg/kg body
weight/day) weight/day)

Na*K*-ATPase (4 moles of 0.56+£0.014 0.40£0.072*** 0.34+£0.022***
Pi liberated/min/mg protein)
Ca?*-ATPase (u moles of 0.57+£0.087 0.37£0.028*** 0.29+£0.037***
Pi liberated/min/mg protein)
Mg?*-ATPase (h moles of 0.65+0.123 0.60£0.016*** 0.32+0.025***
Pi liberated/min/mg protein)
NADH dehydrogenase (p moles 0.09+0.003 0.017+0.002*** 0.06+£0.001***
of K,Fe(CN), reduced/min/mg protein)
Alkaline phosphatase (14 moles 87.1+7.10 140.0£15.8*** 150.0+£15.2***

of phenol liberated/min/mg protein)

Values are expressed as mean+S.D. for six rats in each group, ***P<0.001.

TABLE Il : Levels of sodium, potassium, and calcium in control and MeAN treated rat brain.
Parameters Group 1 Group 2 Group 3
(Control) (50 mg/kg body weight/day) (100 mg/kg body weight/day)
Sodium (mg/g tissue) 0.75+0.001 0.81+0.001*** 0.89+0.001***
Potassium (mg/g tissue) 3.07+£0.044 2.92+0.028*** 2.56+£0.025***
Calcium (mg/g tissue) 0.59+0.008 0.44+0.011*** 0.38+0.009***

Values are expressed as meantS.D. for six rats in each group, ***P<0.001.
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Membrane bound enzymes may be inhibited
by oxidative stress (20) and degradation
products of lipid peroxidation process on the
enzyme molecules (21). MeAN induces
oxidative stress (22) and membrane lipid
peroxidation has been reported earlier (23).
The inhibition of Ca?*-ATPase, Mg?-ATPase
activity may be due to the inhibition of
oxidative phosphorylation (24). Ca?" in the
membrane assist the cross-linking of skeletal
proteins. Ca?" binds to anionic sites in the
lipid bilayer and alters membrane fluidity
(25). Inhibition of Na'K*-ATPase activity
would be expected to cause a reduction of
Ca?* transport out of the cell by means of
the Na*/Ca? exchanger or even Ca?" influx
(26) and expected to elevate Na* concentration
and reduce K* levels (27). This is consistent
with the observations of the present study
on the concentration of sodium (Na‘),
potassium (K*) and calcium (Ca?) in MeAN
ingested rat brain (Table II).

A significant decrease in the activity
of NADH dehydrogenase enzyme on
MeAN administration was observed
(Table I). The decrease in the activity of
NADH dehydrogenase enzyme on MeAN
administration may be due to reduction in
cytochrome oxidase. The reduction in the
activities of cytochrome oxidase and NADH
dehydrogenase in MeAN administrated rats
RBC has been reported earlier (19). MeAN-
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induced reduction in NADH dehydrogenase
activity could be associated with cyanide
production by MeAN. Cyanide inhibits the
activity of cytochrome oxidase (28). Inhibition
of cytochrome oxidase is widely accepted as
the mechanism for the lethal effects of
cyanide in animals (29).

A significant increase in alkaline
phosphatase activity (ALP) in MeAN treated
rats was observed when compared to control.
Alkaline phosphatase reported to be found
mainly in the blood vessels, piaarochonoid
and choroids plexus (30). The presence of
alkaline phosphatase and anionic charge in
the plasma membrane had been known to
regulate vascular endothelial transport (31).
In extensive brain damage such as in
necrotising lesions, severe damage to the
vascular endothelium can lead to leakage of
this enzyme (32). The increase in alkaline
phosphatase may be due to the damage of
vascular endothelium during necrosis of
brain in MeAN treated rats which is evident
in histological studies (data not show).

The present study indicates that the
morphological alterations like cell necrosis and
changes in cellular homeostasis by MeAN may
account for that inhibition of membrane bound
enzymes. These results suggest that MeAN
besides having toxic side effects also exerts
its toxicity on membrane bound enzymes.
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